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Abstract—Hardware and software co-design is becoming in-
creasingly important due to complexities in supercomputing
architectures. Simulating applications before there is access to
the real hardware can assist machine architects in making better
design decisions that can optimize application performance. At
the same time, the application and runtime can be optimized
and tuned beforehand. BigSim is a simulation-based performance
prediction framework designed for these purposes. It can be
used to perform packet-level network simulations of parallel
applications using existing parallel machines. In this paper, we
demonstrate the utility of BigSim in analyzing and optimiz-
ing parallel application performance for future systems based
on the PERCS network. We present simulation studies using
benchmarks and real applications expected to run on future
supercomputers. Future petascale systems will have more than
100,000 cores, and we present simulations at that scale.

Keywords-simulation, performance prediction, mapping, sys-
tem noise, collective communication

I. INTRODUCTION AND MOTIVATION

Some of the largest supercomputers available today cost
tens or even hundreds of millions of dollars. They include
more than a hundred thousand processor cores, and complex
interconnection topologies. Porting and tuning science and
engineering applications to these machines, after their deploy-
ment, can easily take months to years. To run them with lower
efficiencies than feasible in the intervening months, which is
necessary to utilize the machine, represents a huge waste of
resources. Although some aspects of porting and tuning can be
carried out ahead of time, much effort depends on the specific
features of the target machine.

BigSim aims to assist with this situation, using a unique
“emulation followed by simulation” approach. The emulation
phase allows the users to run their application at the target
scale while using a much smaller machine. For example,
a one million core application run can be emulated using
ten thousand cores of an existing machine. This aspect is
supported by an adaptive runtime system in CHARM++ and
Adaptive MPI [1]. Emulation helps application developers
identify scaling bugs in the data structures and code. More
importantly, it records the dependencies between computa-
tions and messages. It also records salient features about the
computational blocks. The obtained traces are then used by a

multi-resolution simulator to produce performance traces and
timings as if the application was run on the target machine.

BigSim’s multi-resolution aspects cover both sequential ex-
ecution and communication. For sequential execution, one can
either use a simple scaling factor, or a detailed model based
on performance counters, or even use timings based on cycle-
accurate simulations of the processor. Another option is to get
the timings by running the sequential blocks on an existing
machine with the same processor. For communication, one
can use a simple latency-bandwidth model or a detailed model
of the network including all the switches and buffers. The
BigSim methodology has been validated on older machines
in the past [2], [3]. We are now using it to tune performance
of some applications for the upcoming PERCS systems that
will have a novel two-level directly connected interconnection
topology and nodes based on IBM’s POWER7 processors.

This paper describes some of the performance analysis and
tuning experiments that we have carried out with BigSim
targeting PERCS systems. The experiments include alternate
schemes for mapping processes to processors for a simple
application prototype, analysis and design of an all-to-all
operation within a “supernode” – a hierarchical component of
the system, and simulation-based analysis of the effect of noise
on a few applications/kernels. These studies cover important
applications, such as MILC and NAMD. Collectively, they
demonstrate the utility of our BigSim framework.

The major contributions arising from this study in using
BigSim to predict performance of a future system, include:
(a) we show that a careful mapping of tasks to processors
can improve overall application performance by 20% in the
presented case; (b) we provide a practical technique to quantify
the effect of system noise on application performance; and (c)
we demonstrate that the level of detail produced by BigSim
may provide insights leading to a more advanced algorithm
for a collective operation, potentially resulting in a five-fold
improvement in its performance.

Unlike other simulators that focus on specific parts of a
system (e.g., cycle-accurate simulators or network simulators),
BigSim has the unique feature of allowing the simulation of
full applications on a future machine. For example, BigSim
is not limited to analyzing certain communication patterns, or



specific code fragments. Instead, it can simulate the actual
computation and communication behavior expected on the
target system, and thus provide a much more realistic pre-
diction of application behavior and potential bottlenecks. This
is particularly important on a large system, where applications
and hardware may interact in very complex ways. Such
interactions might be very hard to capture in analytical models,
or to represent in simulators with a limited scope.

The rest of this paper is organized as follows. §II reviews
related work in the area. §III and §IV briefly describe the
PERCS systems and BigSim, respectively. §V presents results
of BigSim validations for PERCS systems. §VI-A analyzes the
gains that can be obtained with proper mapping of tasks on the
machine. §VI-B discusses BigSim’s capabilities to model the
effects of system noise on applications. We present a concrete
case of optimization in §VI-C, with an example of an important
collective operation, and conclude our work in §VII.

II. RELATED WORK

The Structural Simulation Toolkit (SST) [4] has been used
to model the Red Storm system and perform “what if”
analysis. However, the focus is on the effect of hardware
details on MPI latency and bandwidth, and full application
performance was not modeled. Furthermore, the framework
works on instruction-level traces, which may not be needed
and even become infeasible for simulations at large scale.

PSINS [5] is a trace-driven simulation framework for MPI
applications similar to BigSim. It intercepts MPI calls of the
application to produce traces of computation and communi-
cation. Although their traces may look like BigSim traces,
those traces have to be produced on the same number of MPI
processes (in contrast to the user-level threads of BigSim),
which makes the approach intractable for large target super-
computers. In addition, it uses buses to model the network,
and it does not consider different topologies. Dimemas [6] also
uses buses to model the network, which is not accurate for our
purposes. As will be seen in later sections, the topology, can
be very important for tuning many aspects of the system and
the applications.

IBM’s MARS [7] (also called MERCURY) is a framework
to simulate full HPC systems, down to the instruction and flit
level. This approach is very useful for detailed network design
and tuning, but it is an overkill for large-scale application
studies. BigSim’s level of abstraction for networks is at the
packet level, which is efficient and sufficient for its purposes.
Nevertheless, MERCURY is being used to validate the net-
work simulation component of BigSim for PERCS network.

Hoefler et al. [8] show that simulation is necessary to
realistically inspect noise’s influence. However, their approach
uses existing MPI traces, and it cannot generate traces for
machines larger than those that currently exist. In addition,
the largest simulation conducted for real applications is for
32,768 processors, which is relatively small considering the
current petascale systems. Some of the other noise studies are
focused only on collective operations [9]; however, as shown
in [8], other communication patterns of applications also have
crucial impact on performance.

III. THE PERCS ARCHITECTURE

PERCS is a supercomputer design by IBM that uses
POWER7 processors and a two-level directly-connected net-
work [10]. This was the intended design for the Blue Waters
system at Illinois, however, the plans changed later. In the
PERCS design, the system is divided into supernodes con-
taining 32 nodes each. These nodes are evenly grouped into
four drawers, yielding eight nodes per drawer. Each node is
connected to the seven other nodes in its drawer with 24
GB/s LLocal (LL) links, and to the other 24 nodes in its
supernode with 5 GB/s LRemote (LR) links. All supernodes
are connected to one another with 10 GB/s D links. This
unique, high level of connectivity requires at most three hops
for a direct route between any pair of nodes (L-D-L), and at
most five hops for an indirect route (L-D-L-D-L).

A compute node contains four POWER7 chips, each with
eight processing cores, and a Hub chip. The four POWER7
chips, which form a Quad Chip Module (QCM), have access
to 192 GB/s of bandwidth over four links (24 GB/s per link
in each direction) for sending messages to the Hub chip. This
Hub chip interfaces the QCM with the network through two
Host Fabric Interface (HFI) components, and provides network
switching via an Integrated Switch Router (ISR). The Hub chip
also takes part in the cache coherency of the four POWER7
chips and improves collective performance with a Collective
Acceleration Unit (CAU).

Figure 1 shows a high-level view of the PERCS network.
Its architecture, and thus its performance characteristics, differ
greatly from today’s common topologies (such as meshes
and fat-trees). This uniqueness presents several challenges for
software developers. For example, applications, runtime envi-
ronments, and common operations (like collectives) that have
been optimized and tuned for typical networks may perform
poorly due to inefficient use of the network. Moreover, the
required theoretical and practical experience does not exist yet
for guiding such optimizations. This, coupled with the extra
complexity added by the advanced features of the POWER7
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Fig. 1. High-level view of the two-level PERCS topology: 32 fully-connected
nodes form supernodes, which are in turn fully connected.



and Hub chips, leaves simulation as the most effective means
of analyzing and testing optimization strategies before the
system comes online.

IV. BIGSIM SIMULATION FRAMEWORK

BigSim is a simulation-based framework used for predicting
the behavior of real applications on large parallel machines [3].
It is based on two major components, as illustrated in Figure 2.
First, the CHARM++ or MPI application is run on the BigSim
emulator, which records the time required to process the code’s
Sequential Execution Blocks [2] (SEBs) for that particular
machine and the occurrence of communication events. These
events and time-stamps are written to trace files, which are
then fed into the BigSim simulator. BigSim supports large
simulations with different levels of fidelity. Being a parallel
application itself, BigSim is built on CHARM++, which allows
it to use CHARM++’s processor virtualization ability to simu-
late multiple target processors on each physical processor [1].
The emulation of parallel applications largely depends on
the memory footprint of these applications. For applications
that have a small memory footprint, such as NAMD [11],
BigSim can emulate a machine with hundreds of thousands
of processors on a few thousand physical processors, as
demonstrated later in this paper. For applications with a large
memory footprint, BigSim can employ various techniques such
as out-of-core execution and memory aliasing.

Charm++     MPI

Parallel 
Applications

BigSim Emulator BigSim Simulator Terminal Output

Link Utilization 
Tool

Projections 
Visualizations

Traces

Logs

Stats

Fig. 2. Architectural overview of the BigSim framework

The BigSim simulator uses a network model, selected by
the user, to adjust the send and receive times of the messages
recorded in the logs, thereby producing the final simulation
result [3]. These network models include objects that rep-
resent processors, nodes, network interface cards, switches,
and network links, and they can simulate contention in the
network. Several different topologies and routing algorithms
are available, as well as virtual channel routing strategies
and adaptive routing. The user may choose between direct
and indirect routing, and may configure a number of network
parameters such as link latencies, bandwidths, and buffer sizes.
Finally, instead of selecting a particular network, the user may
also select a simple linear model based on bandwidth and
latency parameters for predicting communication times.

BigSim was designed to assist a user in investigating the
behavior of an application on a particular network than to
simply predict the application’s execution time. As a result,
it offers several forms of output including predicted execu-
tion time of the user code blocks, end-of-simulation network
link utilization statistics over time, which can be graphically
displayed using existing visualization tools.

One goal of the BigSim project is to give application
programmers the opportunity to tune their codes for a new
machine, even before it comes online. To that end, over the
past couple years, in collaboration with IBM, we have built a
BigSim model of the PERCS network and validated it against
IBM’s MERCURY simulator. Our model simulates processors,
nodes, HFIs, ISRs, and all of the LL, LR, and D links. It
implements virtual channels and Hub chip buffers, and it de-
lays packets in the network appropriately if congestion occurs.
Since it is a packet-level simulator rather than a flit-level one,
it is efficient, while still correctly modeling link contention
and buffers. Having such a model now allows us to look
for bottlenecks, not only in applications that will eventually
be run on PERCS systems, but even in simple, widely-used
algorithms such as those for all-to-all. Our simulation approach
has had prior validations on various machines, including
Linux clusters and Blue Gene/P, with NAS Benchmarks and
NAMD [2], [3].

To enable simulations of large systems with hundreds of
thousands of processors, we extended BigSim with several new
features that improve productivity significantly. For example,
to reduce the need to re-run the emulation of an application, we
created a parameter replacement scheme that can modify mes-
sage sizes or sequential block durations when the application
is simulated. Another recent improvement was the addition of
“skip points”, which are marks inserted in the application to
allow the simulator to skip uninteresting parts of the execution.

V. VALIDATION OF THE SIMULATOR

Validation of a simulator, by a team distinct from the
designers of the target system, prior to the construction of the
system, presents several challenges. A modicum of confidence
can be gained by comparisons against a simulator implemented
by the design team. In later stages of the project, basic
validation can be performed against hardware as it becomes
available at various scales.

A. Comparison to MERCURY

We conducted several early tests to validate the PERCS
network model in BigSim against IBM’s MERCURY simu-
lator. Those simulations can include any number of nodes or
supernodes, and we selected network traffic patterns that could
also be produced by MERCURY.

Several ping-pong experiments were performed, primarily
to measure latency differences. Tiny, 2-byte messages were
passed between nodes, exercising all possible combinations of
LL, LR, and D links. MERCURY’s results differed by 0.6%
to 1.1% from BigSim’s. Another test, primarily intended to
examine bandwidth, involved executing an all-to-all commu-
nication pattern within a supernode. Each of the 1,024 cores
sent a 51 KB message to all other cores. The results between
the two simulators only differed by 0.5%.

B. Validation on a Power 775 Drawer

During recent months, we have periodically had remote
access, for brief periods, to a prototype of a Power 775
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Fig. 3. Link utilization for different mappings of a 3D Stencil to 64 supernodes. Each column represents utilization of the LL, LR and D links under a given
mapping; top row corresponds to LL links, middle row to LR links and bottom row to D links.

drawer installed at IBM. This prototype drawer contains eight
nodes, with four POWER7 chips each, 256 cores in total, and
a development version of the Hub interconnect. It must be
noted that this prototype is still significantly different from
the planned Power 775 drawer, both in terms of hardware
configuration and of the software stack. Nevertheless, it is a
good platform for minimal BigSim validation.

We conducted experiments to validate BigSim’s results
with those observed on this prototype drawer. One of those
experiments involved the same all-to-all operation mentioned
previously, with exchanges of size 51 KB. In this test, the
simulation was based on a regular MPI program that contained
a few calls to MPI_Alltoall followed by a barrier. We
simulated this code in BigSim, for a target configuration
of eight PERCS nodes (256 cores), and also ran it on the
prototype drawer. The execution on the drawer resulted in
a time of 22.6 ms for the MPI_Alltoall. Meanwhile,
BigSim’s trace-driven simulation of that code produced a
prediction of 20.2 ms, a result that was within nearly 10%
of what we observed on the actual drawer.

VI. PREDICTION EXPERIMENTS

We now demonstrate the usefulness of BigSim’s capabil-
ities, through various simulation experiments aimed at pro-
viding insights about the behavior of applications on future
PERCS systems.

A. Topology Aware Mapping

For any new machine, various design choices for job
scheduling, routing and mapping of tasks to physical pro-
cessors need to be made. Making these choices by running
experiments on the real machine results in waste of both
time and money. Using BigSim, we can answer the following
questions before the machine is installed:

• Should the job schedulers be topology aware? Should the
node allocation for a particular job be at the granularity
of supernodes, drawers or nodes?

• Should the routing be direct or indirect? Can indirect
routing alleviate congestion on the PERCS network?

• Should tasks be mapped in a topology aware fashion?

In this section, we demonstrate the utility of BigSim in
making some of these choices. We used a simple three-
dimensional seven-point stencil to study some of the questions
raised above and simulate various mappings for 64 supernodes
of the PERCS system. Each MPI task holds a data array of
256×256×256 doubles and sends ghost layers to six neighbors
for a Stencil-like exchange. Hence, the size of each exchange
on the boundary is (256× 256)× 8 bytes = 512 KB.

We tried three different mappings of the 65,536 MPI tasks
onto the 64 supernodes. The first mapping is the default MPI
rank ordered mapping where the first 32 tasks are placed on
the first node, the next 32 on the second and so on. To compare



with this, we tried two other mappings that block MPI tasks
into 3D cuboids, which can nicely map onto the nodes and
drawers of the machine. For example, the second mapping
places blocks of 4 × 4 × 2 on each node and blocks of 8 ×
8 × 4 on each drawer. In the third mapping, in addition to
the blocking for node and drawer, tasks are also blocked on
supernodes, with block dimensions being 16× 8× 8.

Figure 3 presents histograms depicting the number of bytes
sent over the LL, LR and D links in the 64 supernode
subsystem. The first column represents the results for the
default mapping and the second and third column for the
two intelligent mappings described above. Each bin shows the
number of links which had a certain range of bytes passing
through them. It can be seen that the intelligent mappings for
the 3D Stencil reduce the number of links that have a very high
utilization. The aim is to reduce hot-spots that might appear on
a few links, which can slow down the application. Intelligent
mappings are able to lower the maximum data being sent over
any link (as fewer bins on the right contain any links).

Figure 4 shows the time spent in communication and overall
execution of one iteration of the 3D Stencil for different
mappings. The communication reduces by 80% using an
intelligent mapping and the overall time per iteration reduces
by 20%. Hence, reducing congestion and hot-spots on the links
translates into improvement in application performance also.
This illustrates the use of BigSim as a tool to evaluate different
mappings without access to the actual machine and decide on
the best mapping to be used for actual runs.
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B. Effects of System Noise

Many supercomputers use full-fledged operating systems
(OS) on their compute nodes. This is important for several
applications that require a full kernel to execute. However,
current supercomputers that made the same design choice
(such as Jaguar and Ranger) demonstrate significant system
noise on their compute nodes [12]. System noise can have
sources other than the OS, such as architectural effects. It can
affect certain categories of parallel applications – those that
are fine-grained and also those that have long critical paths.

Using BigSim and a recently added feature in it, we can
study the impact of system noise on applications that will
run on large-scale supercomputers like those with the PERCS

network. Different kinds of noise patterns can be introduced
in BigSim simulations:

• Noise traces can be collected from an existing (similar)
node and then a statistically similar noise can be intro-
duced on different nodes of the full simulated system.

• Artificial noise can be introduced by simulating pertur-
bations of different periodicities and durations.

Several noise studies can be done to assess the impact
of noise on applications. The applications that we used for
the studies are NAMD [11], which is a scalable molecular
dynamics code, and MILC (MIMD Lattice Computation) [13],
a quantum chromo-dynamics program. We also used two
versions of a synthetic micro-benchmark (kNeighbor) that it-
eratively executes a nearest-neighbor communication followed
by some amount of sequential computation. One version of
kNeighbor contains an all-reduce at the end of each iteration,
and the other version does not have the all-reduce. The goal
is to illustrate how noise may affect the communication.

For NAMD, the number of target processors was 256K,
and a 10 million-atom water dataset was used as the input;
we only simulated a few time-steps of NAMD. The baseline
time per step for NAMD is about 1.29 ms. In MILC, the
simulation involved the entire su3_rmd code, with a lattice
of size 4×4×3×6 on each core; a target configuration of 4K
processors was used. Given the frequent global synchroniza-
tion in MILC, even at this smaller machine configuration, it is
possible to observe significant impact of noise on performance.
The baseline value of execution time for MILC is 491.9 ms.
kNeighbor was calibrated to have 1 ms of computation per
step, and each processor communicated with eight neighbors.
For the version with the all-reduce, the original simulated
time per step was about 2.4 ms while in the other version
it was around 1.6 ms. Each of the simulations conducted at
that scale was completed in tens of minutes to a couple of
hours running BigSim on just a single node, which shows the
efficiency of this tool. As an example, the collection of trace
files for NAMD were about 25 GB in size.

Figure 5 shows the effect of increasing the frequency of
a noise pattern on application performance. With such a
study, system designers can gain insight about the frequency
where performance starts getting affected by noise of a certain
duration (such as an OS daemon), and they can seek mea-
sures to avoid those effects in the future system. Meanwhile,
application developers can characterize and compare their
application’s noise sensitivity and improve it if it is not
acceptable. As Figure 5 shows, with a decrease in the noise
period (i.e. increase in noise frequency), the overhead on
execution time increases, as expected. However, many noise
characteristics of applications are not easy to identify without
detailed simulations. As an example, NAMD is tolerant to low-
frequency noise (the curve is mostly flat near the left) but, at
some frequencies, there is a sudden increase in execution time
and then the curve becomes flat again. Thus, it is sensitive to
a certain range of frequencies, suggesting that tuning of the
OS daemons’ frequencies (or any other source of noise) can
have significant impact on application’s performance.

For kNeighbor, with naive intuition, one would expect the
version with the all-reduce to have at most 4% increase in
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its execution time. This is because the computation quantum
is 1 ms and, during that interval, there can be only one
occurrence of a perturbation (since the perturbation periods
in Figure 5 are always greater than 1 ms). Given that these
perturbations have an amplitude of 0.1 ms, the maximum
duration for an iteration would be extended from 2.4 ms
to 2.5 ms, representing a 4% overhead. However, with the
increase in noise frequency, there is a higher chance that
very short MPI calls, used to implement the all-reduce, get
perturbed by the noise too. This phenomenon is reflected
towards the right end of Figure 5, and we confirmed this effect
through detailed analysis of the BigSim traces. Meanwhile,
because MILC is more sensitive to noise in general (due to a
global-sum on each iteration of its conjugate-gradient solver),
even executions with just 4K processors get affected by noise,
as much as larger executions of other applications (e.g. the
256K processor run of NAMD). This shows that noise may
be a concern for small-scale jobs on supercomputers as well.

Figure 6 shows a similar study that inspects different ampli-
tudes of a fixed-frequency noise (10 ms period). In this figure,
the NAMD curve is flat for a while, probably due to noise
absorption (elaborated in previous works [8]). Comparing
Figure 6 to 5, one can conclude that trading amplitude for
frequency is beneficial for this type of application. On the other
hand, MILC is sensitive to noise amplitude and is not in that
category. This illustrates the usefulness of this technique for
comparing design alternatives. Suppose there are two choices
such as a high-amplitude, less-frequent noise, and a low-
amplitude but more frequent noise. For instance, these could
correspond to cluster monitoring daemon activities or different
garbage collection strategies in runtime systems, such as full
or incremental garbage collection. This choice of which noise
to keep, can be made by using the two graphs discussed and
comparing the two points on them, corresponding to those
alternatives. In the case of NAMD, for example, our results
indicate that low-frequency noise will win in many cases.

C. All-to-all Optimizations

MPI_Alltoall is an important collective operation, with
extensive usage in applications, such as FFT and matrix
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transpose. It is also among the most communication intensive
collective operations performed in modern day parallel appli-
cations. As a result, it may suffer from scaling problems for
large data exchanges over large systems. Several algorithms
have been proposed for it in the literature; most of them
perform well for a certain range of data sizes exchanged.
We narrow our focus to MPI_Alltoall for large data sizes
and show how simulation can provide insight about internal
behavior and details of a system. Moreover, we show how
this insight may result in up to five-fold improvement of this
important operation, before the future system arrives.

The pairwise-exchange algorithm [14] for an all-to-all has
been found to achieve better results on most machines. In each
step of the algorithm, P/2 pairs of tasks perform a tightly
coupled send-receive operation. The communication pattern
has been found to have minimal congestion for topologies like
torus and fat-trees, with a small number of independent paths
between nodes. However, as we show, direct implementations
of the algorithm will perform poorly on the PERCS network.

We simulated MPI_Alltoall using the pairwise-
exchange algorithm for a supernode of PERCS, with large
data sizes being sent to each task. This scenario is of practical
interest; as an example, it is desirable to allocate on the
same supernode all the tasks of each sub-communicator in
a typical FFT implementation, such that the all-to-all happens
within supernodes. Figure 7(a) presents a stacked chart for link
utilization of three arbitrarily selected links of a QCM during
an MPI_Alltoall of size 1 MB. The three link utilizations
are stacked to show the overlap of usage (hence it can go
beyond 100%). One can observe that the utilization of these
links is interleaved in time. A similar pattern occurs if all the
links of a QCM are plotted. This observation shows that the
pairwise-exchange algorithm causes the links to be used in a
shifted manner. However, given the fully-connected nature of
the network in a supernode, it is desirable to utilize all links
stemming from a QCM simultaneously. This motivated us to
consider a more advanced implementation of an all-to-all, to
enable simultaneous data transfers on all links.

We propose the following carefully-determined ordering
in which the sends from a task should be performed, to



 0

 50

 100

 150

 200

 250

 300

0 600 1200 1800 2400 3000

L
in

ks
 S

ta
ck

ed
 U

til
iz

at
io

n 
(%

)

Time (ms)

Base All-to-All Algorithm’s Link Utilization

Link 7 (LR)
Link 12 (LR)
Link 24 (LR)

(a) Baseline pairwise-exchange algorithm

 0

 50

 100

 150

 200

 250

 300

0 1.38 2.76 4.14 5.52 6.90

L
in

ks
 S

ta
ck

ed
 U

til
iz

at
io

n 
(%

)

Time (ms)

Improved All-to-All Algorithm’s Link Utilization

Link 7 (LR)
Link 12 (LR)
Link 24 (LR)

(b) Proposed all-to-all algorithm

Fig. 7. Link utilization for three arbitrarily selected links of a QCM for the baseline and new all-to-all algorithm

(a) simultaneously utilize links stemming from a QCM, and
(b) avoid the undesired link congestion. We describe the
scheme assuming a node-level all-to-all network with n nodes,
each containing c cores:

1) Consider a list of t = n ∗ c tasks running on n nodes
with c cores each.

2) Each task has to send t− 1 messages, of which sets of
c destination cores lie on a given node. Any core can
reach a particular set of c cores by using the direct link
between the destination node and its home node.

3) In phase i (0 ≤ i ≤ n− 1), core j (0 ≤ j ≤ c− 1) on
every node sends data to the set of cores residing in the
((j + i) mod n)th node.
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Fig. 8. Sends in first phase of the new all-to-all algorithm

This scheme ensures that different cores of a node use
different links, for better link utilization. For example, consider
the communication for phase 0, as shown in Figure 8. This
figure assumes an application consisting of 16 tasks running
on a four-node system, with four cores per node. The circles
represent a core/task and a box represents a node containing
the cores. An edge from a core to a box means that the source

core sends data to all cores in that destination node. In phase 0,
core 0 of each node sends data to the set of cores residing on
node 0, as shown by blue edges. The sends to nodes 1, 2 and
3 are represented by orange, red and cyan edges, respectively.
Such a communication pattern ensures that all the links of each
node are being utilized simultaneously. On a PERCS system,
for cases in which all the cores of a supernode execute the
MPI_Alltoall, this scheme will use all 31 links going out
from a QCM simultaneously.

Figure 7(b) presents a stacked chart with the new link uti-
lizations, for the same three links shown earlier in Figure 7(a).
Note that the new scheme is much faster, hence the scale of the
time axis in Figure 7(b) is different. These results demonstrate
that the new scheme overlaps the usage of links for most of
the simulation period. Thus, the sequential usage of different
links no longer occurs, and utilization improves significantly.

We consider an application with 1024 tasks running on one
supernode of a PERCS system, with the amount of one-way
data exchanged between two cores equal to m bytes. Consider
the volume of data exchanged between two QCMs: QCM-
1 contains 32 cores, each of which has to send m bytes to
32 cores in QCM-2. Thus, the total data communicated from
QCM-1 to QCM-2 is d = 1024 × m bytes. A QCM sends
d bytes to every other QCM over independent links. In the
best scenario, the lower bound for the time taken for the
MPI_Alltoall will be determined by the time taken to send
this data on the slowest link. LR links, with a bandwidth of
5 GB/s, are the slowest links, and thus a lower bound for the
time taken will be d/5 nanoseconds.

We present a comparison between our scheme and the
default MPI_AlltoAll in Figure 9. The plot shows the
simulation times for the baseline all-to-all, our new all-to-all
and a bandwidth-based lower bound, for message sizes from
32 KB to 4 MB. Note that the impact of message startup time
has been ignored in the theoretical numbers. We demonstrate
3x to 5x speedups for message sizes beyond 256 KB. More
importantly, as the message size increases, the performance of
our new scheme remains closer to the theoretical lower bound.
One can also observe that the enormity of bandwidth capacity



in the PERCS network results in nearly constant execution
time for messages of size below 256 KB in the new scheme.
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VII. CONCLUSION

Porting and tuning applications for a new system is typi-
cally a time-consuming task. This task becomes harder when
the new system is significantly larger than existing systems.
Simulation-based analysis is an effective technique to prepare
applications for future machines. With a simulator such as
BigSim, which has the capability to emulate a full appli-
cation’s behavior on a target system, one can predict the
interactions between a given application and the underlying
hardware of the machine. This technique can pinpoint potential
bottlenecks or help programmers focus their attention on
specific parts of the application where performance is expected
to be problematic on an upcoming system.

In this paper, we have demonstrated the utility of the BigSim
simulator to predict application performance on future PERCS
systems. We show various benefits that BigSim can provide to
a future user of a PERCS system, namely: (a) the effects of
different mappings of tasks to processors across the machine:
we show a 20% performance gain via an intelligent mapping;
(b) the potential impact of system noise on applications: we
show a practical technique to introduce noise in the simulation
and assess its effects on application performance; and (c) the
performance gains that can be achieved by changing the
algorithm employed for certain collective operations with large
data sizes: we show that a five-fold improvement is expected
for an MPI_Alltoall within a PERCS supernode.

With a tool like BigSim, users can start tuning their appli-
cations before the system arrives. We plan to calibrate BigSim
continuously to ensure that it accurately models PERCS sys-
tems as such machines become available to us. We also plan to
work on the development of other network models for BigSim,
such as one for the Blue Gene/Q machine.
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